Neural selective activation and temporal regulation of a mammalian GAP-43 promoter in zebrafish.

نویسندگان

  • E Reinhard
  • E Nedivi
  • J Wegner
  • J H Skene
  • M Westerfield
چکیده

Neurons throughout the vertebrate nervous system selectively activate the gene for a growth cone component, GAP-43, during embryonic development, and then decrease its expression abruptly as they form synapses. Distal interruption of mature axons in the central nervous system (CNS) of fish and amphibians, but not in the mammalian CNS reverses the developmental down-regulation of GAP-43 expression. To explore functional conservation and divergence of cis-acting elements that regulate expression of the GAP-43 gene, we studied activation, in transgenic zebrafish embryos, of mammalian GAP-43 genomic sequences fused to a marker gene. The DNA fragments containing the GAP-43 promoter, including a short fragment of 386 base pairs, were preferentially activated in the embryonic fish nervous system at times when extensive neuronal differentiation and neurite outgrowth take place. After 2 days of development, expression of the mammalian transgenes was specifically downregulated in the fish spinal cord but increased in more rostral regions of the CNS. This expression pattern was well correlated with the regulation of the endogenous fish GAP-43 gene revealed by in situ hybridization. Elements of the mammalian gene located a substantial distance upstream of the minimal promoter directed additional expression of the marker gene in a specific set of non-neural cells in zebrafish embryos. Our results indicate that cis-acting elements of the GAP-43 gene, and signaling pathways controlling these elements during embryonic development, have been functionally conserved in vertebrate evolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GAP-43 promoter elements in transgenic zebrafish reveal a difference in signals for axon growth during CNS development and regeneration.

A pivotal event in neural development is the point at which differentiating neurons become competent to extend long axons. Initiation of axon growth is equally critical for regeneration. Yet we have a limited understanding of the signaling pathways that regulate the capacity for axon growth during either development or regeneration. Expression of a number of genes encoding growth associated pro...

متن کامل

A neural-specific GAP-43 core promoter located between unusual DNA elements that interact to regulate its activity.

In an effort to identify cis-acting elements that respond to signals controlling different stages of neural differentiation, we have analyzed the promoter and surrounding regulatory sequences of the rat GAP-43 gene. Expression of this gene is both neural specific and, within neurons, strongly modulated by signals related to axon integrity. Expression analysis in cell lines and primary rat corti...

متن کامل

Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development

The transcription factor POU5f1/OCT4 controls pluripotency in mammalian ES cells, but little is known about its functions in the early embryo. We used time-resolved transcriptome analysis of zebrafish pou5f1 MZspg mutant embryos to identify genes regulated by Pou5f1. Comparison to mammalian systems defines evolutionary conserved Pou5f1 targets. Time-series data reveal many Pou5f1 targets with d...

متن کامل

Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development.

The transcription factor Sox10 is required for the specification, migration and survival of all nonectomesenchymal neural crest derivatives including melanophores. sox10(-/-) zebrafish lack expression of the transcription factor mitfa, which itself is required for melanophore development. We demonstrate that the zebrafish mitfa promoter has sox10 binding sites necessary for activity in vitro, c...

متن کامل

Establishing a new animal model for muscle regeneration studies

Skeletal muscle injuries are one of the most common problems in the worldwide which impose a substantial financial burden to the health care system.  Accordingly, it widely accepted that muscle regeneration is a promising approach that can be used to treat muscle injury patients. However, the underlying mechanisms of muscle regeneration have yet to be elucidated. The muscle structure and muscle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 120 7  شماره 

صفحات  -

تاریخ انتشار 1994